I just pushed some of my structured learning code to github and hope that some people might find it useful. Before describing my code here, I wanted to give a basic intro into structured prediction. I hope I can at least convey some intuition for this vast research area. So here goes... What is structured learning and prediction? Structured prediction is a generalization of the standard paradigms of supervised learning, classification and regression. All of these can be thought of finding a function that minimizes some loss over a training set. The differences are in the kind of functions that are used and the losses. In classification, the target domain are discrete class labels, and the loss is usually the 0-1 loss, i.e. counting the misclassifications. In regression, the target domain is the real numbers, and the loss is usually mean squared error. In structured prediction, both the target domain and the loss are more or less arbitrary. This means the goal is not to predict ...